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The dioxouranium dihalides (UO2X2) are extremely important
in the chemistry of U(VI). Not only do they serve as useful starting
materials (as various adducts) for the preparation of other dioxo-
uranium(VI) compounds, but they are also of importance due to
their conceptually simple nature. Whereas the UO2F2, UO2Cl2, and
UO2Br2 entities have been extensively investigated and structurally
characterized with various coordinating ligands,1 only sparse reports
exist in the literature of the heavier analogue UO2I2,2 and hitherto
no structural data have been reported.3 In the series UO2X2 (X )
F, Cl, Br), a distinct trend of decreasing thermal stability has been
observed, with UO2I2 never having been unambiguously isolated
in the solid state either as free UO2I2 or with solvent molecules
coordinated. Moreover, it has only been described in solution as a
very thermally unstable species, with no convincing characterization
having been reported.3 This is in stark contrast to the situation for
the lighter halogen homologues.

If one compares the U-X bond strengths in U(III)X3 species,4

the U-I bond energy is clearly much weaker than its lighter halogen
counterparts (BE for UF3 ) 619, for UCl3 ) 495.4, for UBr3 )
424.3, and for UI3 ) 343 kJ mol-1).5 Uranium-iodine bonds are
of particular interest to us for precisely this reason. Weak U(VI)-I
bonds could provide a useful new starting material in the chemistry
of U(VI). A very good example of utilizing the weaker U-I bond
in the synthesis of new uranium compounds is UI3‚4thf,6 which
has been shown to be one of the most useful precursors for the
synthesis of new organoactinide species.7 Moreover, it is worthwhile
to note that, while all UX4 and UX3 (X ) F, Cl, Br, I) species are
known and have been structurally characterized,8 for the higher (V
and VI) oxidation states of uranium, neither UI5 nor UI6 has been
structurally characterized, in contrast to UCl5, UBr5, and UCl6 which
have all been structurally characterized.9 Preliminary results from
our laboratory showed that, on reaction of UO2(NO3)2‚6H2O with
BaI2‚2H2O in diethyl ether solution, large, bright orange crystals
formed on cooling, which were observed to melt at temperatures
marginally above-28°C and to decompose within minutes at room
temperature. However, surprisingly, the crystals were not found to
be the expected UO2I2(OH2)2 product, but rather an X-ray diffraction
investigation elucidated that the crystal contained a mixture of
products; two probable component compounds are both separately
depicted in Figure 1. In the case of the mixed compound formed
in reaction 1, it is very difficult to assert the precise nature of the
mixture. In both cases, the U atom occupies a center of symmetry,
and a 69%:31% iodine:nitrate occupancy of the sites has been
determined. A comparison of the UdO, UsOH2, and UsONO2

bond lengths in1 with those observed in UO2(NO3)2‚6H2O shows

very nice agreement.10 The reason for the formation of this mixed
species is still unclear, and work is ongoing in our laboratory to
establish this.

We therefore considered a different synthetic strategy in order
to prepare the novel UO2I2(OH2)2 (Figure 2) which avoided the
use of UO2(NO3)2‚6H2O as a starting material. The reaction of UO2-
Cl2‚xH2O (x > 1) with NaI in diethyl ether at room temperature,
followed by subsequent cooling of the dark orange/red solution,
was found to result in the formation of bright orange crystals of
UO2I2(OH2)2‚4Et2O (2). This reaction had been very briefly
mentioned in the literature;2h however, no identification of the
reaction products was undertaken, and therefore the formation of
UO2I2 was speculative. The desired product, UO2I2(OH2)2‚4Et2O,
slowly decomposes over several hours at-28°C, but it decomposes
within minutes at 4°C when not covered by solvent. When the
product is covered by a layer of diethyl ether, the decomposition
of the crystals is markedly slower.
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Figure 1. Two probable component compounds for the mixed
UO2I1.38(NO3)0.62compound (1) (see text for NO3 occupancies) with thermal
ellipsoids at the 50% probability level. Selected distances (Å) and angles
(deg): U(1)-O(2), 1.758(6); U(1)-O(1), 2.321(7); U(1)-I(1), 2.939(3);
U(1)-O(5), 2.65(2); U(1)-O(6), 2.68(2); O(5)-N(1), 1.29(2); O(7)-N(1),
1.34(5) N(1)-O(6), 1.30(2); O(2)-U(1)-(O2), 180; I(1)-U(1)-I(1), 180;
O(1)-U(1)-O(1), 180; O(1)-U(1)-I(1), 90.20(15); O(5)-N(1)-O(7),
119(3).

UO2(NO3)2‚6H2O + BaI2‚2H2O f 1 + Ba(NO3)2 (1)
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The UdO bond length of 1.773(3) Å in UO2I2(OH2)2‚4Et2O (2)
is in good agreement with the analogous UdO bonds in UO2Cl2‚
3thf (1.765, 1.766 Å)1c and UO2Br2‚3thf (1.747, 1.767 Å).1d As in
all UO2X2 (X ) halide)-containing species, the OdUdO unit is
linear (180°). The halide ligands are trans with respect to one
another, and the compound adopts a slightly distortedD2h structure.
A comparison of the UsI bond lengths in various species shows
the U(VI)sI bond length in2 (d(UsI) ) 3.0267(6) Å) to be in
very nice agreement with the U(IV) species UI4‚(OdC(NMe2)2)2

(d(UsI) ) 3.027, 2.997 Å)11 and (Ph4P)2UI6 (d(UsI) ) 2.986,
3.001 (equitorial); 3.005 (axial) Å),12 although slightly shorter than
the UsI bond lengths in the uranium(III) species UI3‚4thf
(d(UsI) ) 3.119, 3.166, 3.103 Å).5 As this is, to our knowledge,
the only experimentally determined U(VI)sI bond length, com-
parison with similar systems is not possible. The weak nature of
the U(VI)sI bond in both1 and 2 has been shown by the rapid
decomposition of both compounds at 0°C and room temperature,
yielding decomposition products including I2, and1 and2 appear
to be considerably less thermally stable in comparison to the related
U(III) and U(IV) compounds discussed above. However,2 is not
air sensitive, in contrast to both UI3‚4thf and UI4‚(OdC(NMe2)2)2.6,11

A low-temperature Raman spectrum (-110°C) recorded for213

shows several distinct peaks which correspond to diethyl ether and
one very intense peak at 846 cm-1 which corresponds to the
ν(O-U). A further peak at 171 cm-1 may be tentatively assigned
to theν(UsI); however, this requires further investigation.14,15 In
1 and2 we were able to establish the existence of U(VI)sI bonds
without requiring the use of bulky stabilizing ligands, and we are
now further investigating the structure and reactivity of such species
both theoretically and experimentally. A further aim is to prepare
related compounds, which are thermally much more stable, in order
that U(VI)sI-containing compounds do not remain only chemical
curiosities.
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Figure 2. Structural drawing of UO2I2(OH2)2 unit in 2 with thermal
ellipsoids at the 50% probability level. Selected distances (Å) and angles
(deg): U(1)-O(2), 1.773(3); U(1)-O(1), 2.318(4); U(1)-I(1), 3.0267(6);
O(2)-U(1)-(O2A), 180; I(1)-U(1)-I(1A), 180; O(1)-U-O(1A), 180;
O(1)-U-I(1), 90.27(10); O(2)-U-I(1), 89.0 (1).

UO2Cl2‚xH2O + 2NaI f UO2I2(OH2)2 + 2NaCl (2)
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